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Abstract: We present an automated algorithm for global contrast enhancement of images 
with multimodal histograms. To locate modes and valleys, histogram analysis 
is performed by kernel density estimation, a robust nonparametric statistical 
method. Histogram warping by monotonic splines pushes the modes apart, 
spreading them out more evenly across the dynamic range. This technique can 
assist in the contrast correction of images taken facing the light source.  
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1. INTRODUCTION 

Automatic contrast enhancement by global histogram modification is a 
basic tool of image enhancement [1,2] for visual inspection. It is commonly 
used in digital photography, remote sensing, medical imaging, and scientific 
visualization. The task calls for finding an appropriate balance between 
emphasis and distortion. Contrast enhancement makes images easier to 
interpret by making object features easier to distinguish. The classical image 
segmentation techniques, clustering and thresholding, assume that the shades 
that differentiate object features are less common than those that comprise 
them. Hence the modes of the image histogram reflect the similarities within 
uniformly colored object features while the valleys record the characteristics 
that distinguish them. Our histogram warping technique improves the 
contrast between object features by spreading apart the modes of an image 
histogram to take better advantage of the entire dynamic range. It addresses 
the need for a robust, generally applicable, contrast enhancement algorithm 
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for images with multimodal histograms. Our algorithm (Figure 1) improves 
the contrast of photographs with both strong highlights and pronounced 
shadows. In particular, it can handle contrast correction of images taken with 
the camera facing the sun, which has long been a challenge for photography. 

Our input is a gray level image with n  pixel values [0,1]ix ∈  with a unit 
dynamic range, having an implied probability density ( )f x  with cumulative 
distribution ( )F x  and quantiles 1( )F x− . If an importance map is available, 
it defines pixel weights iw  such that iw n∑ = , otherwise all 1iw = . 

1.1 Previous Work 

Global contrast enhancement is performed by a spatially invariant, gray 
level transformation ( )y T x= . Contrast stretch [1,2] by a linear transforma-
tion, defined to satisfy 1( ( ))T Fτ τ−=  and 11 ( (1 ))T Fτ τ−− = − , can only be 
effective as long as the image doesn’t already span the dynamic range. Other 
parametric transformations [1-3], such as gamma correction, also lack the 
flexibility to adapt to multimodal histograms. Histogram thinning [4-6], 
robustly implemented via a mean shift procedure [7], shifts each gray level 
towards its nearest histogram mode. Histogram thinning improves the con-
trast between object features but only by reducing the contrast within them 
since the modes of the histogram are not redistributed across the dynamic 
range. Histogram equalization [1-3,8], defined by 1( ( ))y T F y−=  with 

  
  

  

Figure 1. Contrast enhancement of images (left) by our histogram warping technique (right). 
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( ) ( )T x F x= , produces an approximately uniform gray level distribution. 
Notorious for excessive distortion, it entirely eliminates histogram modes, 
which risks reducing the contrast between object features. Configuring the 
process [9] to accommodate multimodal histograms may demand skillful 
user intervention. There have been attempts to partition the histogram by the 
mean [10], the median [11], the minimal error split [12], the recursive means 
[13], and the histogram valleys [14] in order to separately apply histogram 
equalization to each histogram region. They are all susceptible to visible 
defects since the transformation is not continuously differentiable across 
histogram regions. Histogram warping overcomes this common deficiency in 
order to improve the visual quality of contrast enhancement. By using robust 
statistics, we also improve the reliability of contrast enhancement. To allow 
global contrast enhancement to take account of local image structure [15], 
our method supports the use of an edge map [16] as an importance map. To 
provide for local contrast enhancement [17], it is also compatible with the 
partially overlapped sub-block histogram modification procedure [18]. 

2. OUR TECHNIQUE 

2.1 Histogram Transformation 

Our histogram warping transformation ( )y T x=  is defined by a mapping 
of corresponding gray level values ( )k kb T a=  and their contrast adjustments 

( )k kd T a′= . Thus, we can locally control how the histogram is shifted 
k ka b≠ , compressed 0 1kd≤ < , or stretched 1kd > . We require only that 

the sequence ka  is strictly increasing, kb  is increasing, and kd  is finite and 
nonnegative. A continuously differentiable 1C  transformation is needed in 
order to avoid artificial discontinuities in the resulting histogram 

( ) 

1 1 1( ( )) ( ( ))f T y T T y− − −′ . So, for best image quality, piecewise exponential 
[6] and piecewise linear [1,8] histogram transformations should be avoided 
unless efficiency is the overriding concern. The transformation should be 
monotonic ( ) 0T x′ ≥  to preserve the natural order of gray levels so that the 
polarity of the image is not reversed. For instance, the commonly used cubic 
spline [3] histogram transformations may fail to be monotonic in regions of 
heightened contrast 3k kd r> . Hence, we base our histogram warping method 
on a piecewise rational quadratic, 1C  interpolating monotonic spline [19,20]: 
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2.2 Histogram Analysis 

Our model assumes that each mode of the histogram corresponds to an 
object feature in the image. For instance, a bimodal histogram often reflects 
the distinction between foreground and background features. The extent of 
each object feature, in the spatial domain as well as in the dynamic range, is 
determined by the span of its mode in the histogram, the interval between the 
adjoining valleys of the histogram. To reduce the impact of image noise and 
quantization on the analysis of the structure of the grey level distribution, we 
apply kernel density estimation [21] in place of ad hoc approaches [4,5,14]. 
If speed is critical, a random subset of the data can be used. We approximate 
the density ( )f x  as a mixture of Gaussians centered on the observations ix : 
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As more computationally efficient truncated kernels could cause spurious 
ripples, the infinite support of the Gaussian kernel ( )G x  is needed to ensure 
that the density estimate remains smooth. To minimize estimation error, the 
optimal bandwidth 1 5O( )h n−=  for the density estimate ( )f x  can afford to 
be more sensitive to the data than the optimal bandwidth 1 7O( )h n−=  for the 
derivative estimate ( )f x′  required in mode detection. As the bandwidth h  
increases, the estimate’s bias increases and its variance decreases while the 
estimated density becomes smoother and its modes fewer. A conservative 
bandwidth ensures no more modes are detected than would be observed in 
an asymptotically optimal density estimate. Using this maximal smoothing 
principle [22], we select the largest degree of smoothing compatible with the 
interquartile range, ( ) ( )1 1 1 73 1

4 40.7816774 ( ) ( )h F F n− − −= − . 
Next, we locate the histogram valleys. We consider a critical point 

( ) 0f v′ =  to be a legitimate valley when it has a span of at least 2δ , where 
( ) 0f u′ <  when [ , )u v v−∈  and ( ) 0f w′ >  when ( , ]w v v+∈  for 

1 1[ , ] [ ( ( ) ), ( ( ) )]v v F F v F F vδ δ− −− + = − + . Density estimates based on a 
symmetric kernel are not reliable near the endpoints of the data range, so we 
do not look for critical points among the outliers, requiring ( ) 1F vδ δ≤ ≤ − . 
We start the search by partitioning the data range into equiprobable intervals. 
Each interval [ , ]u w  spans ( ) ( )F w F uδ = − , so it can contain at most one 
legitimate valley. When an interval’s boundaries satisfy the valley condition, 
its valley can be quickly located by bisection: compute the midpoint 

( ) 2v u w= +  and move the lower limit u v←  when ( ) 0f v′ <  or move the 
upper limit w v← when ( ) 0f v′ > . To eliminate the possibility of a ripple on 
an inflection or a plateau, we optionally verify the valley condition on 
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[ , ]v v− +  by confirming that this interval contains no modes. We use the 
mean shift procedure [7], a mode seeking gradient ascent method with step 
size adapted to the density estimate. The candidate v  is indeed a valid valley 
if, when starting at either side of the valley, the procedure does not 
monotonically converge on a mode before leaving the interval [ , ]x v v− +∈ : 
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2.3 Histogram Mapping 

The histogram valleys kv segment the dynamic range 1 1[ , ] [0,1]Kv v − =  
into object features 1[ , ]k kv v− . When no valleys are detected, as a unimodal 
histogram is often caused by the overlap of a pair of object features, we treat 
the mode [7] as though it were a valley, splitting the histogram into light and 
dark regions. Enhancing an object’s contrast by applying histogram 
equalization to its entire histogram region still poses the risk of unwarranted 
distortion. While a more equitable histogram may indeed have a flatter 
shape, entirely flattening the mode of each histogram region can inordinately 
enhance noise in uniformly colored areas of the image. Instead, in our 
histogram mapping ( )k kb T a= , each object feature is represented by the 
midpoint ( )1 2k k ka v v−= +  of its histogram region and equalization 

( ) ( )( ) ( )1 1 1( ) ( ) ( ) ( ) ( ) ( )k k k k k k k k kb F v F a v F a F v v F v F v− − −= − + − −  is only 
applied to the midpoint. Equating relative gray level with relative probability 
( ) ( ) ( ) ( )1 1 1 1( ) ( ) ( ) ( )k k k k k k k kb v v v F a F v F v F v− − − −− − = − − , our mapping 
displaces each midpoint toward the less probable side of its histogram 
region, so k kb a<  whenever 1( ) ( ) ( ) ( )k k k kF a F v F v F a−− < − . Enhancing 
detail without undue distortion, our midpoint mapping gives greater 
emphasis to the more common gray levels of an object feature while limiting 
the scope of gray level shift ( )1 2k k k kb a v v −− ≤ − . The more probable side 
of a histogram region tends to be stretched at the expense of compressing the 
less probable side. Because a mode is typically found on the more probable 
side of its histogram region, the mapping tends to shift modes away from 
each other, spreading them out more evenly across the dynamic range. 

To enhance images that make use of only a small portion of the dynamic 
range, we have incorporated standard histogram stretching into our mapping. 
Thus, we map the data range 1 1

0 1[ , ] [ (0), (1)]Ka a F F− −
+ =  to the dynamic 

range 0 1[ , ] [0,1]Kb b + =  and compress the outliers by stretching the rest of the 
histogram from 1 1

1[ , ] [ ( ), (1 )]Ka a F Fτ τ− −= −  to 1[ , ] [ ,1 ]Kb b τ τ= − . By not 
mapping any gray levels out of gamut, our approach averts information loss. 
Finally, we discard any outliers from our previously calculated mapping to 
ensure that 1 1[ ( ), (1 )]ka F Fτ τ− −∈ −  and [ ,1 ]kb τ τ∈ −  for all 1 k K≤ ≤ . 
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Figure 2. A comparison of global histogram modification techniques for contrast 
enhancement: (c) the original image, (d) our histogram warping, (e) linear contrast 
stretch, (f) histogram equalization, (g) median partitioned histogram equalization, and 
(h) valley partitioned histogram equalization. Both (a) the original histogram and (b) 
our transformed histogram are shown above. The other methods produce a stretched 
histogram, a flat histogram, a two-step histogram, and a three-step histogram. 
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2.4 Histogram Contrast 

The local stretching or compression of the histogram is dictated by the 
contrast adjustments ( )k kd T a′= . To avoid creating unwarranted spikes or 
holes in the histogram, we limit the degree of distortion to 1

kdλ λ− ≤ ≤ . 
Experiments with a variety of formulations lead us to apply the principles of 
histogram equalization to extend a derivate formula for monotonic splines 
[20]. Each contrast adjustment reflects a compromise between a left side 
slope and a right side slope. We rely on the geometric mean of the slopes 
weighted by the probability mass of the slopes’ intervals. The geometric 
mean ( ) 

1 2( , )s s s sΦ − + − +=  has the benefit of preserving flat slopes ( ,0) 0sΦ =  
while canceling inverse slopes 1( , ) 1s sΦ − = . To obtain the local slopes, we 
consider mapping local medians 1

1( ( ) 2 ( ) 2)k k ka F F a F a−±
±= +  to local 

midpoints ( )1 2k k kb b b±
±= + . Hence, along with the endpoints 0 0 0d b a+ +=  

as well as ( ) ( )1 1 11 1K K Kd b a− −
+ + += − − , the contrast adjustments are defined: 
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3. RESULTS AND DISCUSSION 

We applied our histogram warping method to various stock photographs. 
All our experiments used analysis resolution 0.02δ = , outlier threshold 

0.01τ = , and distortion limit 5λ = . The results did not appear particularly 
sensitive to these parameter values. In Figure 2, we illustrate an image for 
which linear contrast stretch makes little difference while histogram equali-
zation methods prove excessive (note how equalization makes the people 
look as bright as the lamps while the floor and skylight suffer apparent 
distortion). Our algorithm spreads out the central modes of the histogram to 
more evenly occupy the dynamic range, without overly altering the relative 
proportions of light and dark tones. Because its design combines aspects of 
linear contrast stretch with histogram equalization, our technique appears to 
balance the limited distortion of the former with the detail emphasis of the 
latter. Our experience suggests that where one of these standard approaches 
fares well, our technique does also. Where both fall short, our technique 
often yields a visible improvement. In such cases, as in Figure 1, we can 
reveal hidden detail by enhancing the contrast of the midtones despite the 
strong presence of both highlights and shadows. The advantage of histogram 
warping by 1C  monotonic splines is that it avoids the defects caused by the 
abrupt transitions between histogram stretching and compression that arise in 
previously proposed piecewise histogram transformations [1,4-6,8-14].  
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